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Abstract: We study the θ dependence of the spectrum of four-dimensional SU(N) gauge

theories, where θ is the coefficient of the topological term in the Lagrangian, for N ≥ 3

and in the large-N limit. We compute the O(θ2) terms of the expansions around θ = 0 of

the string tension and the lowest glueball mass, respectively σ(θ) = σ
(
1 + s2θ

2 + ...
)

and

M(θ) = M
(
1 + g2θ

2 + ...
)
, where σ and M are the values at θ = 0. For this purpose we

use numerical simulations of the Wilson lattice formulation of SU(N) gauge theories for

N = 3, 4, 6. The O(θ2) coefficients turn out to be very small for all N ≥ 3. For example,

s2 = −0.08(1) and g2 = −0.06(2) for N = 3. Their absolute values decrease with increasing

N . Our results are suggestive of a scenario in which the θ dependence in the string and

glueball spectrum vanishes in the large-N limit, at least for sufficiently small values of |θ|.
They support the general large-N scaling arguments that indicate θ̄ ≡ θ/N as the relevant

Lagrangian parameter in the large-N expansion.
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1. Introduction

Four-dimensional SU(N) gauge theories have a nontrivial dependence on the angle θ that

appears in the Euclidean Lagrangian as

Lθ =
1

4
F a

µν(x)F a
µν(x) − iθ

g2

64π2
εµνρσF a

µν(x)F a
ρσ(x) (1.1)

(q(x) = g2

64π2 εµνρσF a
µν(x)F a

ρσ(x) is the topological charge density). Indeed, the most plausi-

ble explanation of how the solution of the so-called U(1)A problem can be compatible with

the 1/N expansion (performed keeping g2N fixed [1]) requires a nontrivial θ dependence

of the ground-state energy density F (θ),

F (θ) = − 1

V
ln

∫
[dA] exp

(
−

∫
ddxLθ

)
, (1.2)

in the d-dimensional pure gauge theory to leading order in 1/N [2, 3]. The large-N ground-

state energy is expected to behave as [4 – 6]

∆F (θ) ≡ F (θ) − F (0) = A θ2 + O
(
1/N2

)
(1.3)

for sufficiently small values of θ, i.e. θ < π. This has been supported by Monte Carlo

simulations of the lattice formulation of SU(N) gauge theories [7]. Indeed, the numerical

results for N = 3, 4, 6 are consistent with a scaling behavior around θ = 0 given by

f(θ) ≡ σ−2∆F (θ) =
1

2
Cθ2(1 + b2θ

2 + · · ·), (1.4)

C = C∞ + c2/N
2 + · · · , b2 = b2,2/N

2 + · · ·

where σ is the string tension at θ = 0. C is the ratio χ/σ2 where χ =
∫

d4x〈q(x)q(0)〉 is the

topological susceptibility at θ = 0. Its large-N limit C∞ is [7, 8] C∞ ≈ 0.022. Moreover,

estimates of c2 and b2,2 are [7] c2 ≈ 0.06, and b2,2 ≈ −0.2 (b2 ≈ −0.02 for SU(3) [7, 9]).
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Note that eq. (1.4) can be recast in the form

f(θ) = N2f̄(θ̄ ≡ θ/N), (1.5)

f̄(θ̄) =
1

2
Cθ̄2(1 + b̄2θ̄

2 + · · ·),

where b̄2 = b2,2 + O(1/N2) = O(1). This is consistent with general large-N scaling argu-

ments applied to the Lagrangian (1.1), which indicate θ̄ ≡ θ/N as the relevant Lagrangian

parameter in the large-N limit of the ground-state energy [4].

Another interesting issue concerns the θ dependence of the spectrum of the theory.

This is particularly interesting in the large-N limit where the issue may also be addressed

by other approaches, such as AdS/CFT correspondence applied to nonsupersymmetric and

non conformal theories, see e.g. ref. [10]. The analysis of the θ dependence of the glueball

spectrum using AdS/CFT suggests that the only effect of the θ term in the leading large-

N limit is that the lowest spin-zero glueball state becomes a mixed state of 0++ and 0−+

glueballs, as a consequence of the fact that the θ term breaks parity, but its mass does not

change [11].

In this paper we present an exploratory numerical study of the θ dependence in the

spectrum of SU(N) gauge theories. For this purpose we use numerical simulations of the

Wilson lattice formulation. Numerical Monte Carlo studies of the θ dependence are made

very difficult by the complex nature of the θ term. In fact the lattice action corresponding

to the Lagrangian (1.1) cannot be directly simulated for θ 6= 0. Here we restrict ourselves

to the region of relatively small θ values, where one may expand the observable values

around θ = 0. We consider the string tension and the lowest glueball mass. We write

σ(θ) = σ
(
1 + s2θ

2 + · · ·
)
, (1.6)

where σ is the string tension at θ = 0. When N ≥ 4 analogous expressions can be written

for the other independent k-strings associated with group representations of higher n-ality.

Moreover, for the lowest glueball state we write

M(θ) = M
(
1 + g2θ

2 + · · ·
)

(1.7)

where M is the 0++ glueball mass at θ = 0. Then the coefficients of these expansions can

be computed from appropriate correlators at θ = 0. The O(θ2) coefficients s2 and g2 are

dimensionless quantities, which should approach a constant in the continuum limit, with

O(a2) scaling corrections. The idea is analogous to the one exploited in ref. [7] to study

the θ-dependence of the ground-state energy.

We shall present results for four-dimensional SU(N) gauge theories with N = 3, 4, 6.

The estimates of the O(θ2) coefficients turn out to be very small for all N ≥ 3. For

example s2 = −0.08(1) and g2 = −0.06(2) for N = 3. Moreover, their absolute values

decrease with increasing N . We also observe that the O(θ2) terms are substantially smaller

in dimensionless ratios such as M/
√

σ and, for N > 3, the ratios of independent k strings,

Rk = σk/σ. Our results are suggestive of a large-N scenario in which the θ dependence

in the string and glueball spectrum vanishes around θ = 0. They are consistent with
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the general large-N scaling arguments indicating θ̄ ≡ θ/N as the relevant parameter in the

large-N limit. We also show that a similar scenario emerges in the two-dimensional CPN−1

models by an analysis of their 1/N expansion.

The paper is organized as follows. In section 2 we outline the numerical method to

estimate the O(θ2) terms of the expansion in powers of θ around θ = 0. The results of our

exploratory numerical study are presented in section 3. Finally, in section 4 we discuss the

θ dependence of two-dimensional CPN−1 models within their 1/N expansion around their

large-N saddle-point solution.

2. Numerical method

2.1 Monte Carlo simulations

We consider the Wilson formulation of lattice gauge theories:

S = −Nβ
∑

x,µ>ν

Tr
[
Uµ(x)Uν(x + µ)U †

µ(x + ν)U †
ν(x) + h.c.

]
, (2.1)

where Uµ(x) ∈ SU(N) are link variables. In our simulations we employed the Cabibbo-

Marinari algorithm [12] to upgrade SU(N) matrices by updating their SU(2) subgroups (we

selected N(N − 1)/2 subgroups and each matrix upgrading consists of N(N − 1)/2 SU(2)

updatings). This was done by alternating microcanonical over-relaxation and heat-bath

steps, typically in a 4:1 ratio.

Computing quantities related to topology using lattice simulation techniques is not

a simple task. In a lattice theory the fields are defined on a discretized set, therefore

the topological properties are strictly trivial. One relies on the fact that the physical

topological properties are recovered in the continuum limit. Various techniques have been

proposed and employed to associate a topological charge Q to a lattice configuration, see,

e.g, refs. [13, 14] for techniques based on bosonic operators, and refs. [15, 16] for techniques

based on fermionic estimators. The most robust definition of topology on the lattice is

the one obtained using the index of the overlap Dirac operator. However, due to the

computational cost of fermionic methods and the need for very large statistics to measure

correlations of Polyakov and plaquette operators with topological quantities, we decided

to use the simpler cooling method, implemented as in ref. [7]. Direct comparison with a

fermionic estimator is known to show a good agreement in the case of SU(3) [15, 7, 17],

supporting the idea that the cooling method is fairly stable in this case. Moreover, the

agreement among different methods is expected to improve with increasing N [18, 19].

A severe form of critical slowing down affects the measurement of Q, posing a seri-

ous limitation for numerical studies of the topological properties in the continuum limit,

especially at large values of N . The autocorrelation time τQ of the topological modes

rapidly increases with the length scale, much faster than the standard square law of ran-

dom walks [7, 20]. The available estimates of τQ appear to increase as an exponential of

the length scale, or with large power laws. A qualitative explanation of this severe form

of critical slowing down may be that topological modes give rise to sizeable free-energy

barriers separating different regions of the configuration space. As a consequence, the
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evolution in configuration space may present a long-time relaxation due to transitions be-

tween different topological charge sectors. This dramatic effect has not been observed in

plaquette-plaquette or Polyakov line correlations, suggesting an approximate decoupling

between topological modes and nontopological ones, such as those determining the con-

fining properties and the glueball spectrum. But, as we shall see, such a decoupling is

not complete. Therefore the strong critical slowing down that is clearly observed in the

topological sector will eventually affect also the measurements of nontopological quantities,

such as those related to the string and glueball spectrum.

2.2 The O(θ2) coefficients of the θ expansion

In this subsection we describe the method to determine the O(θ2) coefficients of the θ

expansions such as eqs. (1.6) and (1.7). Let us first discuss the case of the fundamental

string tension. The string tension can be determined from the torelon mass, i.e. the mass

describing the large-time exponential decay of the wall-wall correlations GP of Polyakov

lines [21]. In the presence of a θ term,

GP (t, θ) = 〈AP (t)〉θ =

∫
[dU ]AP (t)e−

R

d4xLθ

∫
[dU ]e−

R

d4xLθ

(2.2)

where

AP (t) =
∑

x1,x2

TrP (0; 0) Tr P (x1, x2; t), (2.3)

and P (x1, x2; t) is the Polyakov line along the x3 direction of size L. The time separation

t is an integer multiple of the lattice spacing a: t = nt a. The correlation GP can be

expanded in powers of θ. Here, we are considering the case of the fundamental string

tension, but the discussion can be easily extended to any other group representation, by

replacing the trace with the corresponding character in eq. (2.3). Taking into account the

parity symmetry at θ = 0, we obtain

GP (t, θ) = G
(0)
P (t) +

1

2
θ2G

(2)
P (t) + O(θ4), (2.4)

where

G
(0)
P (t) = 〈AP (t)〉θ=0, (2.5)

G
(2)
P (t) = −〈AP (t)Q2〉θ=0 + 〈AP (t)〉θ=0〈Q2〉θ=0 (2.6)

and Q is the topological charge.

The correlation function GP is expected to have a large-t exponential behavior

GP (t, θ) ≈ B(θ)e−E(θ)t, (2.7)

where E(θ) is the θ-dependent energy of the lowest state (torelon mass), and B(θ) is

the overlap of the source with the lowest-energy state. If the lattice size L is sufficiently

large, the lowest-energy states describing the long-distance behavior of Polyakov correlators

should be those of a string-like spectrum. Then, the string tension is extracted using the

– 4 –



J
H
E
P
0
6
(
2
0
0
6
)
0
0
5

relation

E(θ) = σ(θ)L − π

3L
. (2.8)

Here we are assuming that the O(1/L) (Lüscher) correction is independent of θ. Actually

we are also assuming the so called free string spectrum

Wn = σL

(
1 − π

3l2σ
+ n

4π

l2σ

)
, lσ ≡

√
σL (2.9)

(n: excitation level), obtained neglecting the self-interaction terms in the string effective ac-

tion, see e.g. ref. [22]. As shown in ref. [22], only the O(1/L) correction should be universal,

while subleading corrections are generally expected. They depend on the unknown coeffi-

cients of the higher order terms of the effective QCD string action. For example, besides

the free string spectrum, one may also consider the Nambu-Goto string spectrum [22, 23]

Wn = σL

(
1 − 2π

3l2σ
+ n

8π

l2σ

)1/2

. (2.10)

In particular, if one assumes the Nambu-Goto spectrum, instead of eq. (2.8), one should

use the Nambu-Goto lowest-energy state to determine the string tension, i.e.

W0 = σL

(
1 − 2π

3l2σ

)1/2

= σL

[
1 − π

3l2σ
− π2

18l4σ
+ O

(
1/l6σ

)]
(2.11)

Therefore the Nambu-Goto string spectrum leads to a different estimate of the string

tension at finite lσ:

σfs = σNG

[
1 − π2

18l4σ
+ O(l−6

σ )

]
(2.12)

where σfs and σNG are the string tensions extracted from the torelon mass assuming re-

spectively the free and Nambu-Goto spectrum.

Lattice sizes such that lσ & 3 should be sufficiently large to have an effective string

picture parametrized by a constant string tension σ [24]. Then the different estimates

of σ obtained by using the free and Nambu-Goto spectra might provide an estimate of

systematic error on the determination of σ from the lowest torelon mass due to our partial

knowledge of the effective QCD string action. For lσ = 3 one has σNG/σfs − 1 ≈ 0.007.

We expand the large-t behavior (2.7) of GP (t, θ) as

GP (t, θ) ≈ B0e
−E0t

[
1 + θ2h(t) + · · ·

]
(2.13)

where we set

B(θ) = B0 + θ2B2 + · · · , (2.14)

E(θ) = E0 + θ2E2 + · · · , (2.15)

and

h(t) =
B2

B0
− E2t . (2.16)
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Comparing eq. (2.13) with eq. (2.6), we find that

h(t) =
G

(2)
P (t)

2G
(0)
P (t)

. (2.17)

Thus E2 can be estimated from the difference

∆h(t) = h(t) − h(t + a), (2.18)

indeed

lim
t→∞

∆h(t) = E2 a (2.19)

Corrections are exponentially suppressed as exp[−(E∗
0 − E0)t] where E∗

0 is the mass of

the first excited state at θ = 0. Assuming the free-string spectrum (2.9), E∗
0 − E0 =

4π/L. Notice that, although E∗
0 − E0 → 0 for L → ∞, this difference is not small in

our calculations. Indeed, since we choose the lattice size L so that lσ ≡ √
σL ≈ 3, (E∗

0 −
E0)/E0 ≈ 4π/l2σ ≈ 1.4.

Finally, the coefficient s2 of the O(θ2) term in the expansion (1.6) is obtained by

s2 =
E2

σL
(2.20)

s2 is a dimensionless scaling quantity. It is expected to approach a constant in the contin-

uum limit, with O(a2) scaling corrections.

An analogous procedure can be used to determine the leading O(θ2) term in the θ

expansion of the lowest glueball mass M(θ) around θ = 0, cf. eq. (1.7). In this case we

employ wall-wall correlators of plaquette-like operators with up to 6 links, all in spatial

directions, in order to determine the 0++ glueball mass. Correspondingly we define

∆k(t) ≡ k(t) − k(t + a) (2.21)

where k(t) is the function analogous to h(t) defined from the glueball wall-wall correlators.

Then, the O(θ2) coefficient g2 in the expansion (1.7) can be obtained by

g2 =
1

aM
lim
t→∞

∆k(t) (2.22)

where M is the 0++ glueball mass.

Finally, we mention that in order to improve the efficiency of the measurements we

used smearing and blocking procedures (see, e.g., refs. [25, 24]) to construct new operators

with a better overlap with the lightest propagating state. Our implementation of smearing

and blocking was already described in ref. [26]. We only mention that we constructed new

super-links using three smearing, and a few (2-4) blocking steps, according to the value of

L. These super-links were used to compute improved Polyakov lines or plaquette operators.
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N β lattice stat a2 σ aM0++ M0++/
√

σ

3 5.9 123 × 18 25M/20 0.0664(6) 0.80(1) 3.09(4)

3 6.0 163 × 36 25M/40 0.0470(3) 0.70(1) 3.23(4)

4 10.85 123 × 18 16M/50 0.0646(6) 0.76(1) 2.99(5)

6 24.5 83 × 12 9M/50 0.114(2) 0.83(1) 2.46(4)

Table 1: Some information on our Monte Carlo simulations for N = 3, 4, 6. The estimates of the

string tension σ are obtained using eq. (2.8).

3. Results

In this section we present the results of our exploratory study of the θ dependence of

the spectrum using the method outlined in the preceding section. Table 1 contains some

information on our MC runs for N = 3, 4, 6 on lattices L3×T . Since the coefficients of the θ

expansions (1.6) and (1.7) are computed from connected correlation functions, such as (2.6),

and turn out to be quite small, high statistics is required to distinguish their estimates from

zero: Our runs range from 9 to 25 million sweeps, with measures taken every 20-50 sweeps.

This requirement represents a serious limitation to the possibility of performing runs for

large lattices and in the continuum limit, especially for large values of N , due also to the

severe critical slowing down discussed in section 2.1. For all values of β considered in this

work, the autocorrelation time satisfies τQ . 100 sweeps [7]. Furthermore, β values were

chosen to lie in the weak-coupling region, i.e., beyond the first order phase transition in the

case N = 6, and beyond the crossover region characterized by a peak of the specific heat for

N = 3, 4; see ref. [26] for a more detailed discussion of this point. Runs generally started

from cold configurations, to avoid problems due to metastable states at the transition (in

the case N = 6). The lattice size L was chosen so that lσ ≡ √
σL & 3, which should be

sufficiently large to obtain infinite-volume results (see, e.g., refs. [24, 26]), at least within

our precision. Due to the above-mentioned limitations, and in particular for N = 4, 6 we

could afford only one value of β, so that no stringent checks of scaling could be performed.

For this reason our study should be still considered as a first exploratory investigation.

Figures 1 and 2 show the results for the discrete differences ∆h(t) and ∆k(t), cf.

eqs. (2.18) and (2.21), for N = 3 at β = 5.9, 6.0 and for N = 4, 6 respectively. As expected,

the signal degrades rapidly with increasing t. Anyway, they appear rather stable already

for small values of t. As already discussed in section 2.2, the approach to a constant in

the large-t limit should be exponential, as exp[−(E∗
0 − E0)t], where E∗

0 is the energy of

the first excited state at θ = 0. In the case N = 3 the data at β = 6 appear to approach

the asymptotic behavior more rapidly than at β = 5.9. This should be due to the fact

that a more effective blocking procedure can be applied when L = 16, rather than L = 12,

achieving a better overlap with the lowest state.

We estimate the coefficients s2 and g2 of the O(θ2) terms in the expansions (1.6) and

(1.7) from the corresponding discrete differences ∆h(t) and ∆k(t) (cf. eqs. (2.19), (2.20),

and (2.22)), taking the data at t/a = 2 in the N = 3, 4 runs, and at t/a = 1 for N = 6.

In Table 2 we report the results. The estimates of s2 and g2 are small in all cases, and

decrease with increasing N . For N = 3 the results at β = 5.9 and β = 6.0 are consistent,

– 7 –
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0 1 2 3 4
t

-0.20

-0.15

-0.10

-0.05

0.00

0.05

∆h(t) 
∆k(t) 

N=3 β=5.9

0 1 2 3 4
t/a

-0.20

-0.15

-0.10

-0.05

0.00

0.05

∆h(t)
∆k(t)

β=6.0N=3

Figure 1: Plot of ∆h(t) and ∆k(t) for N = 3 at β = 5.9 (above) and β = 6.0 (below). The data

for ∆k(t) are slightly shifted along the t axis.

supporting the expected scaling behavior. As final estimate one may consider

s2 = −0.08(1), g2 = −0.06(2) for N = 3 (3.1)

One may also consider the θ dependence of the scaling ratio

M(θ)√
σ(θ)

=
M√
σ

(1 + c2θ
2 + · · ·), (3.2)

where c2 = g2 − s2/2. Using the numbers reported in Table 2, we see that the O(θ2) terms

tend to cancel in the ratio. Indeed, we find c2 = −0.02(2), −0.01(3), −0.01(2) respectively

for N = 3, 4, 6.

– 8 –



J
H
E
P
0
6
(
2
0
0
6
)
0
0
5

0 1 2 3 4
t
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N=4 β=10.85

0 1 2 3 4
t/a

-0.20

-0.15

-0.10

-0.05

0.00

0.05

∆h(t)
∆k(t)

N=6 β=24.5

Figure 2: Plot of ∆h(t) and ∆k(t) for N = 4 at β = 10.85 (above) and N = 6 at β = 24.5 (below).

The data for ∆k(t) are slightly shifted along the t axis.

For N = 4, 6 there are other independent k-strings associated with representations of

higher n-ality. Analogously to the fundamental string, one may write

σk(θ) = σk

(
1 + sk,2 θ2 + · · ·

)
, (3.3)

where σk is the k-string tension at θ = 0. The case k = 1 corresponds to the fundamental

string tension, i.e. σ1 ≡ σ and s1,2 ≡ s2. One may also consider the ratio Rk = σk/σ,

Rk(θ) = Rk

(
1 + rk,2 θ2 + · · ·

)
, (3.4)

where Rk is the ratio at θ = 0 (see e.g. refs. [24, 26 – 28] for recent numerical studies of

the k-string spectrum), and rk,2 = sk,2 − s2. In the case N = 4 there is one independent
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N β s2 g2

3 5.9 −0.077(8) −0.05(2)

3 6.0 −0.077(15) −0.07(4)

4 10.85 −0.057(10) −0.04(3)

6 24.5 −0.025(5) 0.006(15)

Table 2: Results for the coefficients s2 and g2, as derived from the discrete differences at distance

t/a = 2 for N = 3, 4, and at t/a = 1 for N = 6.

k string, σ2, besides the fundamental one; in the case N = 6 there are two. Our results

for the k > 1 strings are less stable. We obtained sufficiently precise results only from the

simulation for N = 4. In the channel of Polyakov lines corresponding to the k = 2 string,

we found a2σ2 = 0.091(2), ∆h2(t/a = 1) = −0.044(13), while at distance t/a = 2 the signal

was already unreliable. This leads to the estimate s2,2 = −0.040(12). Note that s2,2 ≈ s1,2

(s1,2 ≡ s2 is reported in Table 2), suggesting an even smaller O(θ2) term in the ratio R2,

i.e. |r2,2| . 0.02.

In conclusion, the above results show that the O(θ2) terms in the expansion around

θ = 0 of the spectrum of SU(N) gauge theories are very small, especially when dimensionless

ratios are considered. Moreover, they appear to decrease with increasing N , and the

coefficients do not show evidence of convergence to a nonzero value. This is suggestive of

a scenario in which the θ dependence of the spectrum disappears in the large-N limit, at

least for sufficiently small values of θ around θ = 0. General large-N scaling arguments

applied to the Lagrangian (1.1) indicate θ̄ ≡ θ/N as the relevant Lagrangian parameter in

the large-N limit [4]. In the case of the spectrum, this would imply that O(θ2) coefficients

should decrease as 1/N2. This is roughly verified by our results, taking also into account

that they may be subject to scaling corrections, especially those at N = 4, 6. For example,

in the case of the string tension, s2 ≈ s2,2/N
2 with s2,2 ≈ −0.9 . Of course, further

investigations are required to put this scenario on a firmer ground.

The hypothesis of a simple θ dependence in the large-N limit may be extended to finite

temperature, up to the first-order transition point. Recent studies [29, 30] have shown that

in the large-N limit the topological properties remain substantially unchanged up to the

first-order transition point.

4. θ dependence in the two-dimensional CPN−1 model

Issues concerning the θ dependence can also be discussed in two-dimensional CPN−1 mod-

els [31, 32], which are an interesting theoretical laboratory. Indeed they present several

features that hold in QCD: asymptotic freedom, gauge invariance, existence of a confining

potential between non gauge invariant states (that is eventually screened by the dynamical

constituents), and non-trivial topological structure (instantons, θ vacua). Moreover, unlike

SU(N) gauge theories, a systematic 1/N expansion can be performed around the large-N

saddle-point solution [31 – 33].
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Analogously to four-dimensional SU(N) gauge theories, one may add a θ term to the

Lagrangian, writing

Lθ =
N

2g
Dµz Dµz + iθ

1

2π
εµν ∂µAν , (4.1)

where z is a N -component complex scalar field subject to the constraint z̄z = 1, Aµ = iz̄∂µz

is a composite gauge field, and Dµ = ∂µ + iAµ is a covariant derivative. The topological

charge density is q(x) = 1
2π εµν ∂µAν . Then one may study the θ dependence of the

ground state and other observables. In the following we discuss this issue within the 1/N

expansion, performed keeping g fixed. Simple large-N scaling arguments applied to the

Lagrangian (4.1) indicate that the relevant θ parameter in the large-N limit should be

θ̄ ≡ θ/N .

As mass scale we consider the zero-momentum mass 1 M defined from the small-

momentum behavior of the Fourier trasformed two-point correlation function of the oper-

ator Pij(x) ≡ z̄i(x)zj(x),

GP (x − y) = 〈Tr P (x)P (y)〉, (4.2)

i.e. from the relation

G̃P (p)−1 = Z−1[M2 + p2 + O(p4)] (4.3)

where Z is a renormalization constant.

Analogously to SU(N) gauge theories, the ground state energy F (θ) depends on θ.

One may define a scaling ground state energy f(θ) and expand it around θ = 0,

f(θ) ≡ M−2[F (θ) − F (0)] =
1

2
Cθ2

(
1 +

∑

n=1

b2nθ2n

)
(4.4)

where F (θ) is defined as in eq. (1.2), M is the mass scale at θ = 0, and C, bj are constants.

C is the scaling ratio χ/M2 at θ = 0, where χ is the topological susceptibility, i.e. the

two-point correlation function of the topological charge density at zero momentum. The

correlation function of the topological charge density, and in particular the topological

susceptibility, has been computed within the 1/N expansion [34 – 36]. We have

C = χ/M2 =
1

2πN
+ O(1/N2) (4.5)

The coefficients b2n are obtained from appropriate 2n-point correlation functions of the

topological charge density operators at θ = 0. For example

b2 = − χ4

12χ
, (4.6)

χ4 =
1

V

[
〈Q4〉θ=0 − 3

(
〈Q2〉θ=0

)2
]
, (4.7)

where Q =
∫

d2x q(x) is the topological charge.

1This quantity is more suitable for a 1/N-expansion than the mass scale determined from the large-

distance exponential decay of GP (x), due to its analytical properties in 1/N [33].
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Figure 3: Diagrams contributing to the four-point connected function χ4, cf. eq. (4.7), within the

1/N expansion (the corresponding Feynman rules can be found in ref. [33]).

We refer to ref. [33] for a discussion of the 1/N expansion within CPN−1 models, its

set up, and the list of the corresponding Feynman rules. In Fig. 3 we show the 1/N -

expansion Feynman diagrams contributing to χ4 at leading order. The analysis of the

Feynman diagrams of the connected correlations necessary to compute b2n shows that they

are suppressed in the large-N limit, as

b2n = O(1/N2n). (4.8)

This implies that the ground-state energy can be rewritten as

f(θ) = Nf̄(θ̄ ≡ θ/N), (4.9)

f̄(θ̄) =
1

2
C̄θ̄2

(
1 +

∑

n=1

b̄2nθ̄2n

)
,

where C̄ ≡ NC and b̄2n = N2nb2n are O(1) in the large-N limit. Note the analogy with the

expected θ dependence of the ground-state energy in SU(N) gauge theories, cf. eq. (1.5).

The calculation of the coefficients of the leading large-N terms is rather cumbersome. Here,

we only report the results obtained for the leading terms of b̄2 and b̄4

b̄2 = −27

5
, b̄4 = −1830

7
. (4.10)

Within the 1/N expansion one may also study the dependence of the mass M on the

parameter θ. We write

M(θ) = M
(
1 + m2θ

2 + · · ·
)

(4.11)

The coefficient m2 can be extracted from the connected correlations

〈Tr P (x)P (0)Q2〉θ=0 − 〈Tr P (x)P (0)〉θ=0〈Q2〉θ=0 . (4.12)

The analysis of its diagrams giving the corresponding 1/N expansion indicates that m2 is

suppressed as

m2 = O(1/N2) (4.13)

This confirms the general large-N scaling arguments indicating θ̄ ≡ θ/N as the relevant

parameter in the large-N limit, as in the scenario put forward for the four-dimensional

SU(N) gauge theories.
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